77 research outputs found

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    Adaptive Multi-Pattern Fast Block-Matching Algorithm Based on Motion Classification Techniques

    Get PDF
    Motion estimation is the most time-consuming subsystem in a video codec. Thus, more efficient methods of motion estimation should be investigated. Real video sequences usually exhibit a wide-range of motion content as well as different degrees of detail, which become particularly difficult to manage by typical block-matching algorithms. Recent developments in the area of motion estimation have focused on the adaptation to video contents. Adaptive thresholds and multi-pattern search algorithms have shown to achieve good performance when they success to adjust to motion characteristics. This paper proposes an adaptive algorithm, called MCS, that makes use of an especially tailored classifier that detects some motion cues and chooses the search pattern that best fits to them. Specifically, a hierarchical structure of binary linear classifiers is proposed. Our experimental results show that MCS notably reduces the computational cost with respect to an state-of-the-art method while maintaining the qualityPublicad

    A Rate Control Algorthm for Low-Delay H.264 Video Coding with Stored-B Pictures

    Get PDF
    A rate control (RC) algorithm for H.264 video coding with stored-B (SB) pictures is proposed for low-delay applications. Different models for P and SB pictures are defined for a better QP and MAD estimation. Furthermore, a novel saw-tooth shaped model of target buffer level has also been introduced for a proper bit allocation in GOP structures with SB pictures. Our experimental results show that this proposal outperforms the reference software RC in terms of buffer occupancy and target bit rate adjustment at the expense of slight quality reduction.Publicad

    A two-level sliding-window VBR controller for real-time hierarchical video coding

    Get PDF
    In this paper, a novel rate control algorithm for real-time VBR hierarchical video coding is proposed. The algorithm works at two levels that are called long- and short-term levels. The long-term level aims at ensuring that the bit count does not exceed the maximum allowed amount for a few-second long window. To this end, it considers a sliding window spanning several GOPs, which is shifted on a GOP basis. In doing so, it avoids the potentially sharp adjustments at the end of the GOP that usually happen in non-sliding approaches. The short-term level aims to provide a proper QP adaptation to fit the target bit budget, which is dictated by the long-term level. It also uses a sliding window, which in this case extends over one GOP. The proposed algorithm has been assessed in realistic conditions for a variety of video sequences. It has been compared to both a constant quality and CBR hierarchical approaches, showing an excellent performance in terms of both rate-distortion and PSNR variation

    A Cauchy-density-based rate controller for H.264/AVC in low-delay environments

    Get PDF
    The accuracy of the Cauchy probability density function for modeling of the discrete cosine transform coefficient distribution has already been proved for the frame layer of the rate control subsystem of a hybrid video coder. Nevertheless, in some specific applications operating in real-time low-delay environments, a basic unit layer is recommended in order to provide a good trade-off between quality and delay control. In this paper, a novel basic unit bit allocation for H.264/AVC is proposed based on a simplified Cauchy probability density function source modeling. The experimental results show that the proposed algorithm improves the average peak signal-to-noise ratio in 0.28 and 0.35 dB with respect to two well-known rate control schemes, while maintaining similar peak signal-to-noise ratio standard deviation and buffer occupancy evolution

    Cauchy-Density-Based Basic Unit Layer Rate Controller for H.264/AVC

    Get PDF
    The rate control problem has been extensively studied in parallel to the development of the different video coding standards. The bit allocation via Cauchy-density-based rate-distortion (R-D) modeling of the discrete cosine transform (DCT) coefficients has proved to be one of the most accurate solution at picture level. Nevertheless, in some specific applications operating in real-time low-delay environments, a basic unit (BU) layer is recommended in order to provide a good trade-off between picture quality and delay control. In this paper, a novel BU bit allocation for H.264/AVC is proposed based on a simplified Cauchy probability density function (PDF) source modeling. The experimental results are twofold: 1) the proposed rate control algorithm (RCA) achieves an average PSNR improvement of 0.28 dB respect to a well known BU layer RCA, while maintaining a similar buffer occupancy evolution; and 2) It achieves to notably reduce the buffer occupancy fluctuations respect to a well known picture layer RCA, while maintaining similar quality levels.Publicad

    Perceptually-aware bilateral filtering for quality improvement in low bit rate video coding

    Get PDF
    Proceedings of: Picture Coding Symposium (PCS 2012). Krakow, Poland, May 7-9, 2012Perceptual coding has become of great interest in modern video coding due to the need for higher compression rates. Many previous works have been carried out to incorporate perceptual information to hybrid video encoders, either modifying the quantization parameter according to a certain perceptual resource allocation map or preprocessing video sequences for removing information that is not perceptually relevant. The first strategy is limited by the presence of blocking artifacts and the second one lacks of adaptation to video content. In this paper, a novel and simple approach is proposed, which performs a smart filtering prior to the encoding process preserving both the structural and motion information. The experiments prove that the use of proposed method implemented on an H.264 encoder significantly improves its perceptual quality for low bit rates.Publicad

    A simplified subjective video quality assessment method based on signal detection theory

    Get PDF
    Proceedings of: Picture Coding Symposium (PCS 2012). Krakow, Poland, May 7-9, 2012.A simplified protocol and associated metrics based on Signal Detection Theory (SDT) for subjective Video Quality Assessment (VQA) is proposed with the aim of filling the gap existing between the lack of discrimination abilities of objective quality estimates, specially when perceptually motivated processing methods are involved and the costly normative subjective quality tests. The proposed protocol employs a reduced number of assessors and provides a quality ranking of the methods being evaluated. It is intended for providing the rapid experimental turn around necessary for developing algorithms. We have validated our proposal performing the test on a well-known result for the video coding community: namely, that the inclusion of an in-loop deblocking filter provides a quality enhancement. The results obtained corroborate this fact. A software interface to design and administrate the test is also made publicly available.This work has been partially supported by the regional project CCG10-UC3M/TIC-5304 (Comunidad AutĂłnoma de Madrid - UC3M) and by National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad

    Low-complexity motion-based saliency map estimation for perceptual video coding

    Get PDF
    Proceeding of: 2nd National Conference on Telecommunications (CONATEL), Arequipa, 17-20 May 2011In this paper, a low-complexity motion-based saliency map estimation method for perceptual video coding is proposed. The method employs a camera motion compensated vector map computed by means of a hierarchical motion estimation (HME) procedure and a Restricted Affine Transformation (RAT)-based modeling of the camera motion. To allow for a computationally efficient solution, the number of layers of the HME has been restricted and the potential unreliable motion vectors due to homogeneous regions have been detected and specially managed by means of a smooth block detector. Special care has been taken of the smoothness of the resulting compensated camera motion vector map to avoid unpleasant artifacts in the perceptually-coded sequence, by including a final post-processing based on morphological filtering. The proposed saliency map has been both visually and subjectively assessed showing quality improvements when used as a part of the H.264/AVC standard codec at medium-to-low bitrates.Regional project CCG10-UC3M/TIC-5570 from Comunidad AutĂłnoma de Madrid / University Carlos III MadridPublicad

    Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein-Protein Interaction with alfa-Parvin

    Get PDF
    Integrin-linked kinase (ILK) has emerged as a controversial pseudokinase protein that plays a crucial role in the signaling process initiated by integrin-mediated signaling. However, ILK also exhibits a scaffolding protein function inside cells, controlling cytoskeletal dynamics, and has been related to non-neoplastic diseases such as chronic kidney disease (CKD). Although this protein always acts as a heterotrimeric complex bound to PINCH and parvin adaptor proteins, the role of parvin proteins is currently not well understood. Using in silico approaches for the design, we have generated and prepared a set of new tripeptides mimicking an alpha-parvin segment. These derivatives exhibit activity in phenotypic assays in an ILK-dependent manner without altering kinase activity, thus allowing the generation of new chemical probes and drug candidates with interesting ILK-modulating activities
    • …
    corecore